STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS

In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.

متن کامل

an integral dependence in modules over commutative rings

in this paper, we give a generalization of the integral dependence from rings to modules. we study the stability of the integral closure with respect to various module theoretic constructions. moreover, we introduce the notion of integral extension of a module and prove the lying over, going up and going down theorems for modules.

متن کامل

The Field of Quotients Over an Integral Domain

Let I be a non degenerated non empty multiplicative loop with zero structure and let u be an element of Q(I). Then u1 is an element of I. Then u2 is an element of I. Let I be a non degenerated integral domain-like non empty double loop structure and let u, v be elements of Q(I). The functor u+ v yields an element of Q(I) and is defined by: (Def. 2) u+ v = 〈u1 · v2 + v1 ·u2, u2 · v2〉. Let I be a...

متن کامل

An integral - field spectroscopic strong lens survey

We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening earlytype galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show...

متن کامل

Finitely-generated modules over a principal ideal domain

Let R be a commutative ring throughout. Usually R will be an integral domain and even a principal ideal domain, but these assumptions will be made explicitly. Since R is commutative, there is no distinction between left, right and 2-sided ideals. In particular, for every ideal I we have a quotient ring R/I. F always denotes a field. Our goal is to prove the classification theorem for finitely-g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2013

ISSN: 1015-8634

DOI: 10.4134/bkms.2013.50.6.1905